## Projectile Motion (Non-Horizontal Projection)

The following applies to situations in which a projectile returns to its launch height.
(I call these "level field" problems)
Such an object has a vertical displacement of zero, so in the y-direction:
$\overrightarrow{\Delta d}=0$
$\vec{\Delta} d=\vec{v}_{1} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2}$

$$
\begin{aligned}
0 & =v_{1} \sin \theta \Delta t+\frac{1}{2}(-g) \Delta t^{2} \\
\Delta t & =\frac{2 v_{1} \sin \theta}{g}
\end{aligned}
$$

This is called the "time of flight" for the projectile, the time taken to return to launch height.
To find the horizontal distance the projectile travels, called the "range",
$\overrightarrow{\Delta d}{ }_{x}=\vec{v}_{x} \Delta t$
(Since acceleration is zero in the x-direction)
$\Delta d_{x}=v_{1} \cos \theta \Delta t$
$\Delta d_{x}=v_{1} \cos \theta\left(\frac{2 v_{1} \sin \theta}{g}\right)$
$\Delta d_{x}=\frac{2 v_{1}^{2} \sin \theta \cos \theta}{g}$
$\Delta d_{x}=\frac{v_{1}^{2} \sin 2 \theta}{g}$

So to maximize the range of the projectile, we must maximize

## $\sin 2 \theta$

Thus the launch angle must be $45^{\circ}$ to maximize range.

1. Iggy punts a rugby ball with a launch speed of 22 $\mathrm{m} / \mathrm{s}$ at an angle of $38^{\circ}$ above the horizontal. Determine the
a) "Hang time" of the ball.
b) the range of the kick.
(ignore the height of the ball when kicked)
a)

$$
\begin{array}{r}
\Delta t=\frac{2 v_{1} \sin \theta}{g} \\
\Delta t=\frac{2(22) \sin 38^{\circ}}{9.8}
\end{array}
$$

$$
\Delta t=2.76 s
$$

b)

$$
\Delta d_{x}=\frac{v_{1}^{2} \sin 2 \theta}{g}
$$

$$
\Delta d_{x}=\frac{(22)^{2} \sin 2\left(38^{\circ}\right)}{9.8}
$$

$$
\Delta d_{x}=48 \mathrm{~m}
$$

2. Ringo the human cannonball is fired from a 32 m high cliff with a launch speed of $28 \mathrm{~m} / \mathrm{s}$ at an angle of $48^{\circ}$ above the horizontal. Determine
a) his flight time.
b) the velocity with which he hits the water below.
